
towards a Drupal performance benchmark

Beat the Devil

http://drupal.org/user/770300
@rodricels

http://drupal.org/user/8859
@perusio

http://drupal.org/user/39078
@NITEMAN_es

http://drupal.org/user/770300
http://twitter.com/rodricels
http://drupal.org/user/8859
http://twitter.com/perusio
http://drupal.org/user/39078
http://twitter.com/NITEMAN_es

We'll kill a lot of sacred
cows

the murder weapon
will be

Occam's razor

which amounts to the
principle of least effort

laziness is good

hopefully in the end you'll
be puzzled

good things happen to
puzzled people who

obsess

simplest

laziest
easiest

performance is for
everyone

do you have
 performance issues?

system thinking

http://www.flickr.com/photos/irisheyes/148134965/sizes/o/in/photostream/

mathematics is
 for everyone

request per second
vs

seconds per request

MTTR
Mean Time To

Recovery
vs

MTBF
Mean Time Between

 Failure

do you monitor live
system

performance?

live monitoring tools

Munin

Cacti

drupal accesslog table
has tons of useful data

beware the logs
logstash / graylog

aggregate them

economics
costs per

request/volume/peek

operational costs
Return On Investment

we're talking about $peed

$peed = cost_effective_performance

slowness
downtime
operations

costs you money

it's not the
tools you have

 it's the use you
make of them

have you benchmarked
your Drupal?

complex is easy and fragile

simple is hard and resilient

Keep It Simple Stupid

Know your stack
Know your targets

Monitor your performance

find where the problems are
don't fix things that aren't broken

the worse the first
one change a time

&
keep a log of your actions

dissecting

frontend vs backend

backend
static vs dynamic

dynamic

processing vs data gather

beyond development &
operations

good developers are those that take
all aspects in consideration

keep everything as close as
possible to production

test systems

take advantage of
configuration management

to reproduce your live
infrastructure

test systems

some software has its
performance directly

tied to the number of cores
and/or

the amount of RAM

test systems

sacred cow of frontend

CDN (expiration logic)
cloud servers

number of req. / parallelization

blocking events

data side: DNS resolution
data side: download time
data side: size / weight
order matters

frontend vs backend

frontend vs backend tools

Firebug
Chrome tools

Google Speed Tracer
Yslow

Web services [*] [*] [*] [*]

https://developers.google.com/speed/pagespeed/insights
http://gtmetrix.com/
http://www.webpagetest.org/compare
http://tools.pingdom.com/fpt

sacred cow of backend

load balancing: how? failover strategy?
more webheads: cache consistency?
another server: what for?

anonymous vs registered

cacheable vs non cacheable

backend: static vs dynamic

ab
Jmeter
Httperf

wrk
Gatling

TCP copy

 HTTP benchmarking tools

sacred cow of PHP

HipHop (hacked libs)

PHP Extensions (C / PECL)

sacred cow of PHP

APC Tuning
profile, profile, profile and profile

upgrading PHP version (if you're brave)

locks
difficult to dissect

devel

dynamic
processing vs data gather

benchmarking / profiling PHP

Xdebug
Webgrind
Xhprof

don't even try without an
opcode cache

& remember the hard disk

sacred cow of databases

NoSQL
denormalization
sharding

http://www.flickr.com/photos/rebeccaselah/3942904359/sizes/l/in/photostream/

sacred cow of databases

NoSQL => helps with writes
denormalization => helps with HUGE DBs
sharding => helps with Big DBs

https://tools.percona.com/
Percona toolkit [*] (formerly maat-kit)
tcpdump + Percona toolkit
Logs are vital!

Every engine has strongs & weakness

Better on bare metal!

MySQL Tune & Benchmarking
tools

http://www.percona.com/software/percona-toolkit/

root hardware causes

network & DNS play a role

static content depends mainly on I/O

dynamic content (php) depends on CPU

database server mainly depends on RAM

Drupal known issues (DB): Watchdog, sessions,
accesslog... history...

Please do stress, load & stability tests regularly
in your live system

extra balls:

This is our way, what is
yours?

(no cows were harmed in the making of this
presentation)

¿Questions?
Pablo Picasso [speaking of computers]:

 "But they are useless. They can only give you
answers."

